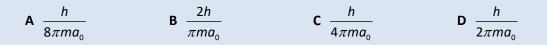
Quiz E21.2


Atomic physics HL

(You may use the fact that the orbit radius of an electron in the n^{th} state of the hydrogen atom is given by a_0n^2 where a_0 is a constant.)

- 1. What is a common characteristic of the Bohr and the Rutherford models of the hydrogen atom?
 - A Both predict the size of the hydrogen atom
 - **B** The electron orbit radii are discrete
 - **C** The electron radiates as it orbits the nucleus
 - **D** The electron moves in circular orbits
- 2. The condition $mvr = n \frac{h}{2\pi}$ was used in the Bohr model. What is **not** a consequence of this

condition?

- A The total electron energy is quantized.
- **B** The electron orbit radius is quantized.
- **C** The wavelengths in the emission spectrum of hydrogen are discrete.
- **D** The electron total energy is negative.
- 3. What was Bohr's main objection to the Rutherford model of the atom?
 - A It did not take into account the strong nuclear force.
 - **B** Given the orbital radius, the energy could not be predicted.
 - **C** It could not be applied to multi-electron atoms.
 - **D** The electron would radiate and plunge into the nucleus.
- **4.** Which expression gives the speed of an electron in the *n* = 4 state of hydrogen?

5. What is the ratio of the kinetic energy of an electron in the n = 3 state of hydrogen to that in n = 2?

A
$$\frac{2}{3}$$
 B $\frac{4}{9}$ **C** $\frac{3}{2}$ **D** $\frac{9}{4}$

6. What is the total energy of an electron in the *n* = 2 state of hydrogen?

A
$$-\frac{ke^2}{8a_0}$$
 B $-\frac{ke^2}{4a_0}$ **C** $-\frac{ke^2}{2a_0}$ **D** $-\frac{ke^2}{a_0}$

- **7.** What is the ratio of the period of revolution of an electron in the state *n* = 2 of hydrogen to that in the state *n* = 1?
 - **A** 2 **B** 4 **C** 8 **D** 16
- **8.** What is the wavelength, in meters, emitted in a transition from the state *n* = 4 of hydrogen to the state *n* = 2?

A
$$\frac{3}{16} \times \frac{1.24 \times 10^{-6}}{13.6}$$

B $\frac{16}{3} \times \frac{1.24 \times 10^{-6}}{13.6}$
C $\frac{3}{4} \times \frac{1.24 \times 10^{-6}}{13.6}$
D $\frac{4}{3} \times \frac{1.24 \times 10^{-6}}{13.6}$

- **9.** What is an estimate of the minimum speed of an electron which upon collision with an electron in the *n* = 1 state of hydrogen will force the hydrogen electron to leave the atom?
 - **A** 10^2 m s^{-1} **B** 10^4 m s^{-1} **C** 10^6 m s^{-1} **D** 10^8 m s^{-1}
- 10. Hydrogen gas is kept at a low temperature. What is an estimate of the temperature to which the gas must be raised to so that an appreciable number of electrons find themselves in the state n = 2?

A 300 K **B** 10³ K **C** 10⁵ K **D** 10⁷ K

Quiz E21.2	
Answers	
1	D
2	D
3	D
4	Α
5	В
6	Α
7	С
8	В
9	С
10	С